3,340 research outputs found

    Dynamic response of structural elements exposed to sonic booms

    Get PDF
    Dynamic response of uniform beams and plates exposed to sonic boom

    Annual sea level variability of the coastal ocean: The Baltic Sea-North Sea transition zone

    Get PDF
    The annual cycle is a major contribution to the non-tidal variability in sea level. Its characteristics can vary substantially even at a regional scale, particularly in an area of high variability such as the coastal ocean. This study uses previously validated coastal altimetry solutions (from ALES dataset) and the reference ESA Sea Level Climate Change Initiative dataset to improve the understanding of the annual cycle during the Envisat years (2002-2010) in the North Sea - Baltic Sea transition area. This area of study is chosen because of the complex coastal morphology and the availability of in-situ measurements. To our knowledge, this is the first time that the improvements brought by coastal satellite altimetry to the description of the annual variability of the sea level have been evaluated and discussed. The findings are interpreted with the help of a local climatology and wind stress from a reanalysis model. The coastal amplitude of the annual cycle estimated from ALES altimetry data is in better agreement with estimations derived from in-situ data than the one from the reference dataset. Wind stress is found to be the main driver of annual cycle variability throughout the domain, while different steric contributions are responsible for the differences within and among the sub-basins. We conclude that the ALES coastal altimetry product is a reliable dataset to study the annual cycle of the sea level at a regional scale and the strategy described in this research can be applied to other areas of the coastal ocean where the coverage from the tide gauges is not sufficient

    Cardiovascular collapse caused by carbon dioxide insufflation during one-lung anaesthesia for thoracoscopic dorsal sympathectomy

    Get PDF
    Publisher's copy made available with the permission of the publisherCarbon dioxide insufflation into the pleural space during one-lung anaesthesia for thoracoscopic surgery is used in some centres to improve surgical access, even though this practice has been associated with well-described cardiovascular compromise. The present report is of a 35-year-old woman undergoing thoracoscopic left dorsal sympathectomy for hyperhidrosis. During one-lung anaesthesia the insufflation of carbon dioxide into the non-ventilated hemithorax for approximately 60 seconds, using a pressure-limited gas inflow, was accompanied by profound bradycardia and hypotension that resolved promptly with the release of the gas. Possible mechanisms for the cardiovascular collapse are discussed, and the role of carbon dioxide insufflation as a means of expediting lung collapse for procedures performed using single-lung ventilation is questioned.RJD Harris, G Benveniste, J Pfitznerhttp://www.aaic.net.au/Article.asp?D=200119

    The Value of Liquidity

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72848/1/1080-8620.00026.pd

    Host-microbe interaction in the gastrointestinal tract

    Get PDF
    The gastrointestinal tract is a highly complex organ in which multiple dynamic physiological processes are tightly coordinated while interacting with a dense and extremely diverse microbial population. From establishment in early life, through to host-microbe symbiosis in adulthood, the gut microbiota plays a vital role in our development and health. The effect of the microbiota on gut development and physiology is highlighted by anatomical and functional changes in germ-free mice, affecting the gut epithelium, immune system, and enteric nervous system. Microbial colonisation promotes competent innate and acquired mucosal immune systems, epithelial renewal, barrier integrity, and mucosal vascularisation and innervation. Interacting or shared signalling pathways across different physiological systems of the gut could explain how all these changes are coordinated during postnatal colonisation, or after the introduction of microbiota into germ-free models. The application of cell-based in vitro experimental systems and mathematical modelling can shed light on the molecular and signalling pathways which regulate the development and maintenance of homeostasis in the gut and beyond. This article is protected by copyright. All rights reserved

    Transmission of sonic boom pressure through a window pane

    Get PDF
    Transmission of sonic boom pressure through glass window pane

    In Vivo 3D Digital Atlas Database of the Adult C57BL/6J Mouse Brain by Magnetic Resonance Microscopy

    Get PDF
    In this study, a 3D digital atlas of the live mouse brain based on magnetic resonance microscopy (MRM) is presented. C57BL/6J adult mouse brains were imaged in vivo on a 9.4 Tesla MR instrument at an isotropic spatial resolution of 100 μm. With sufficient signal-to-noise (SNR) and contrast-to-noise ratio (CNR), 20 brain regions were identified. Several atlases were constructed including 12 individual brain atlases, an average atlas, a probabilistic atlas and average geometrical deformation maps. We also investigated the feasibility of using lower spatial resolution images to improve time efficiency for future morphological phenotyping. All of the new in vivo data were compared to previous published in vitro C57BL/6J mouse brain atlases and the morphological differences were characterized. Our analyses revealed significant volumetric as well as unexpected geometrical differences between the in vivo and in vitro brain groups which in some instances were predictable (e.g. collapsed and smaller ventricles in vitro) but not in other instances. Based on these findings we conclude that although in vitro datasets, compared to in vivo images, offer higher spatial resolutions, superior SNR and CNR, leading to improved image segmentation, in vivo atlases are likely to be an overall better geometric match for in vivo studies, which are necessary for longitudinal examinations of the same animals and for functional brain activation studies. Thus the new in vivo mouse brain atlas dataset presented here is a valuable complement to the current mouse brain atlas collection and will be accessible to the neuroscience community on our public domain mouse brain atlas website
    corecore